Liposomal Encapsulation Helps Deliver Medications More Effectively

By Jody Leach


Medications and nutritional supplements often target specific organs or systems. The most effective delivery method is by injection or intravenous drip, both of which transfer substances directly into the bloodstream. When taken orally, medications must pass through the upper digestive system, where they may be degraded. Liposomal encapsulation forms a protective barrier that allows more thorough absorption.

Discoveries leading to this process emerged nearly fifty years ago, and have led to the introduction of more controlled methods of administering medications. It is currently important in treating serious medical conditions such as some forms of cancer, treatment-resistant fungal infections, and degenerative vision conditions commonly associated with old age. Standard drug delivery mechanisms still predominate, but encapsulation is proving equally beneficial.

In order to allow drugs to pass through the digestive tract without being broken down, they must be safely encased within a non-toxic protective barrier. Effectively shielding these individual microscopic capsules is possible when using an organic agent that mimics normal cellular walls. When that substance is activated using a variety of current methods, small individual bubbles made of liposomes are formed.

They are microscopic, and can easily pass through the stomach into the small intestine where the coating slowly dissolves, allowing the medication to be absorbed. In many cases, this process actually improves the therapeutic impact, and has the additional benefit of producing fewer side effects. Not all types of medicine are adaptable to this delivery system, which is primarily associated with water-soluble substances.

Because the process is not invasive and generates fewer negative reactions, there are immediately and obvious advantages. Liposomes are completely biodegradable, and contain no petroleum-derived compounds or other unwanted toxic substances. They easily survive an onslaught of powerful acid, and later function as mini time-release stations within the small intestine. Powerful cancer drugs administered in this way create less collateral damage to surrounding tissues.

While being used successfully today in many hospitals, there are some drawbacks. Production costs are comparatively high, but are subject to a natural decrease as product use expands. Seal leakage has been an issue in some cases, and simple oxidation processes can diminish effectiveness. Certain drugs may experience a diminished half-life, and their long-term viability may be reduced. Even with these known issues, positive benefits exceed negative reports.

The past decade has seen a transition from strictly medical venue to include delivery of nutritional supplements and cosmetic materials. Anecdotal evidence of an increase in physical well-being associated with administering vitamins and minerals in this way are common. Vitamin C has long been touted as a natural way to combat the effects of upper respiratory infections, and this method is said to provide noticeably better results than pills alone.

Although there is currently widespread information available outlining personal production of encapsulated herbs, vitamins and minerals, making medical-quality products is costly and complicated, and is not a panacea for the problems associated with aging. As uses for this drug delivery process continue to grow, consumers will benefit most from its incorporation into health regimens that are already known to be beneficial.




About the Author:



No comments:

Post a Comment