Nanotechnology refers to the manipulation of substances on the atomic and molecular level. Liposomes are small encapsulating bubbles that are microscopic in size, made of materials called phospholipids that mimic human cells, and have the property of being both attracted and repelled by water. Liposomal formulation includes the process that forms those bubbles, as well the encapsulation and delivery of the drugs contained within.
First appearing during the 1960s, the importance of these tiny vesicular structures that enclose water-soluble molecules soon became apparent. Researchers and pharmacists became aware of their potential to deliver specific drugs used in the treatment of cancer and other serious diseases. The process encourages more accurate targeting of unhealthy cells and avoids problems associated with other types of administration.
The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.
The molecules of a drug are suspended in water within the structure of the artificial cell, which is surrounded by a manufactured membrane. The formulating process of specifically designed liposomes transforms them into mechanisms ideal for transporting hydrophilic drugs, or those that are attracted to water and dissolve effectively. Current methods produce two primary forms called unilammelar and multilammelar, and subcategories include varying sizes.
Molecules of a particular drug are encased within a membrane, and can be transferred to the targeted cells upon activation. They can be effectively released into an organism by fusing specific layers with other living cells, which delivers the tiny doses they contain. Other methods of release use reactive chemicals that also encourage diffusion at the molecular level. The overall result is a more controllable, steady release.
Not only can this process be more easily managed by physicians, but it leaves no residual toxins behind, and is compatible biologically with human cells. Comparatively recent developments in ultrasound technology use sound waves to activate these chemical invaders, increasing their strength in regions where it is most needed. Others are being administered via the respiratory system, where they are deposited in the lungs and slowly released.
It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.
Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.
First appearing during the 1960s, the importance of these tiny vesicular structures that enclose water-soluble molecules soon became apparent. Researchers and pharmacists became aware of their potential to deliver specific drugs used in the treatment of cancer and other serious diseases. The process encourages more accurate targeting of unhealthy cells and avoids problems associated with other types of administration.
The formulations avoid absorption problems and outcomes that are associated with direct IV or oral administration. Conventional systems of delivery can produce difficulty in accurately managing the consequences of harsh drug therapy, primarily because they concentrate toxicity in healthy organs, often producing a great deal of collateral damage. When the bubble-like liposomes containing medications are used, the release of those drugs is more readily controlled.
The molecules of a drug are suspended in water within the structure of the artificial cell, which is surrounded by a manufactured membrane. The formulating process of specifically designed liposomes transforms them into mechanisms ideal for transporting hydrophilic drugs, or those that are attracted to water and dissolve effectively. Current methods produce two primary forms called unilammelar and multilammelar, and subcategories include varying sizes.
Molecules of a particular drug are encased within a membrane, and can be transferred to the targeted cells upon activation. They can be effectively released into an organism by fusing specific layers with other living cells, which delivers the tiny doses they contain. Other methods of release use reactive chemicals that also encourage diffusion at the molecular level. The overall result is a more controllable, steady release.
Not only can this process be more easily managed by physicians, but it leaves no residual toxins behind, and is compatible biologically with human cells. Comparatively recent developments in ultrasound technology use sound waves to activate these chemical invaders, increasing their strength in regions where it is most needed. Others are being administered via the respiratory system, where they are deposited in the lungs and slowly released.
It is still costly to manufacture these microscopic capsules for medical use. As continuing research produces a growing number of uses for this kind of nanotechnology, the overall expense will decline, but will not become cheap. Because this is relatively new technology in many ways, there are issues that still must be resolved. Some types of structures have experienced cellular leaking, and others have been affected by oxidation.
Like many medical innovations, liposomes are increasingly being used commercially. They are being called a better way to deliver vitamin, herbal and mineral supplements, and there are popular recipes for the personal creation of dietary supplements. While these uses produce their own controversies, the continued development of better medication delivery systems gives additional hope for advanced treatments.
About the Author:
You can visit purensm.com for more helpful information about Liposomal Formulation Delivers Medication More Effectively.
No comments:
Post a Comment